KEK STF-2 加速器の LLRF 制御系の状況 STATUS OF LOW-LEVEL RF CONTROL SYSTEM FOR STF-2 ACCELERATOR AT **KEK**

松本利広^{#, A, B)}. 荒川大^{A)}, 片桐広明^{A)}, チュウフェン^{A, B)}, 松本修二^{A, B)}, 三浦孝子^{A, B)}, 矢野喜治^{A)}

Toshihiro Matsumoto^{#, A, B)}, Dai Arakawa^{A)}, Hiroaki Katagiri^{A)}, Qiu Feng^{A, B)}, Shuji Matsumoto^{A, B)}, Takako Miura^{A, B)},

Yoshiharu Yano^{A)}

^{A)} High Energy Accelerator Research Organization (KEK) ^{B)} The Graduate University for Advanced Studies (SOKENDAI)

Abstract

The STF-2 accelerator has been developed to realize the International Linear Accelerator (ILC) in the Superconducting rf Test Facility (STF) at KEK. In the STF-2 accelerator, three RF units are installed and feed its power to the RF-gun cavity, two superconducting (SC) cavities and eight SC cavities. The low-level rf (LLRF) systems for these RF units have been developed and constructed to fulfill the requirement for the ILC. The first beam acceleration of the STF-2 accelerator was conducted from February to March 2019 and the performance of the LLRF system was evaluated. This report describes the present status of the LLRF system of the STF-2 accelerator.

はじめに 1.

KEK では国際リニアコライダー(ILC)[1]の建設に向 けて、STF 棟で超伝導空洞を用いた線形加速器(STF-2 加速器)の開発を進めている[2](図 1)。STF-2 加速器は、 フォトカソードを用いた RF 電子銃、超伝導空洞 2 台を 組み込んだキャプチャークライオモジュール(CCM)、超 伝導空洞 12 台をクライオモジュール 1 と 2a(CM1/2a)で 構成、電子ビームの加速を行う。このため STF-2 加速器 では 3 台の高周波系が構築され、RF 電子銃の常伝導 空洞へは5 MW クライストロン、CCM へは 800 kW クラ イストロン、CM1/2a の 8 台の超伝導空洞へは 10 MW マルチビームクライストロン(MBK)により高周波を供給 する。特に CM1/2a の高周波系は、1台の 10 MW MBK で 39 台の超伝導空洞を励振する ILC の高周波系に準 拠するものとして開発が進められている。

ILC では、39 台の超伝導空洞の振幅・位相波形のベ クトル和を計算、ビーム加速を行う領域に対して、振幅安

Figure 1: STF-2 accelerator.

toshihiro.matsumoto@kek.jp

Figure 2: Digital control board developed by KEK.

定度 $\Delta A/A = 0.07\%$ rms、 位相安定度 $\Delta \phi = 0.32$ deg.rms が要求されている。この要求を満たすため、低電力高周 波(low-level RF、LLRF)系ではデジタル信号処理によ るフィードバック制御を採用、これまでにアナログ-デジタ ル変換器(ADC)、デジタル-アナログ変換器(DAC)、デ ジタル信号処理には Field Programmable Gate Array (FPGA)を搭載したデジタル制御ボードを開発[3, 4](図 2)、STF 棟での超伝導空洞を用いた試験において要求 を満たす結果を得てきた[5]。ここでは STF-2 加速器で のビーム加速試験に向けて構築した LLRF 系について 報告する。

2. 基準信号生成系

STF-2 加速器の高周波系の運転では、基準発振器で 1.3 GHz の CW 信号を生成、恒温槽内に設置した分周 器や I/Q 変調器、増幅器を用いて、運転周波数の RF 信号、周波数変換に用いる LO 信号、デジタル制御 ボードのクロック信号を生成、各高周波系に配信する構 成を採用した。これまでは基準発振器からの 1.3 GHz の CW 信号を配信、高周波系毎に LO 信号やクロック信号 を生成して運転してきた。しかし LO 信号やクロック信号 の僅かな周波数の違いによる高周波系間での位相差が 観測された。このため、今回の運転では同じ LO 信号、 クロック信号を用いるようにしている。

3. RF 電子銃の LLRF 制御系

RF 電子銃のデジタル LLRF 制御系の構築のため、 4ch.の16 bit ADC、4ch.の16 bit DACを持つ MTCA.0 規格のデジタル制御ボードを用いた。RF 電子銃空洞に はフィードバック制御の対象となる空洞内電場の信号を 取り出すポートが無い。このため、空洞入力直前の方向 性結合器から入力 RF を ADC1、反射 RF を ADC2 で 検出、和を計算することで空洞内電場を評価、フィード バック制御を行う。

空洞内電場を計算するためには、入力 RF と反射 RF 間の校正が重要である。入力 RF に一定の位相変化を 与えて周波数を変化させ、入力 RF と反射 RF の反射係 数を測定(図 3)する方法で入力 RF と反射 RF の校正 値を評価した[6]。また、空洞のカップリングや Q_L を算出、 電子銃空洞の基本デザイン(TESLA CDR)との良い一 致が得られた(表 1)。

Figure 3: Reflection coefficient obtained by RF input and RF reflected.

Table 1:	Characteristics	of RF-gun	cavity
----------	-----------------	-----------	--------

Coupling	0.857
$Q_{\rm L}$	12268
00	22779
×۷	(22700; TESLA CDR)

4. CCM の LLRF 制御系

CCM に組み込まれる 2 台の超伝導空洞は、RF 電子 銃の運転と同じデジタル制御ボードを用いて、ベクトル 和フィードバック制御で運転が行われる。その際、上流 側の空洞は加速電場 16 MV/m、下流側は 24 MV/m に 設定される。また、安定な超伝導空洞の運転のためには、 空洞の離調を同時に測定することが望ましい。この空洞 離調は、入力 RF、反射 RF、空洞の RF の波形を基に計 算をすることで求めることができる[7]。このため、RF 電子 銃にも用いたデジタル制御ボード 2 台使って、1 台目で 2 台の空洞のベクトル和フィードバック制御と上流側空洞

Figure 4: Correlation between energy estimated with beam and energy calibrated for RF pickup.

STF-2 加速器の運転期間中、CCM の 2 台の空洞で のパワーメーターで測定した加速電場とビームエネル ギーから求めた加速電場について比較を行った。ここで は一方の加速電場の設定を数点に変えて、CCM 下流 に設置されたベンド磁石の電流値とプロファイルモニ ターの位置からビームエネルギーを求めた。その際、他 方の空洞は離調させてビーム加速に寄与しないようにし ている(図 4)。測定の結果、上下流の空洞共に設定電 場の 90%弱のビームエネルギーの増加であった。

上流側空洞については、切片が原点に近いことから、 ケーブル損失等の測定誤差と考えられる。下流側空洞 については、今のところ原因不明である。これらについて は引き続き、再測定や調査が必要である。

5. CM1/2aのLLRF 制御系

8 台の超伝導空洞で運転する CM1/2a のデジタル LLRF 制御系の構築のため、14ch.の 16 bit ADC、2ch. の 16 bit DAC を持つ MTCA.4 規格のデジタル制御 ボードを用いた。今回の STF-2 加速器の運転では、 チューナーに不具合のあった 1 台を除いた 7 台でのベ クトル和フィードバック制御でビーム加速を行った。また 10ch.の 16 bit ADC、2ch.の 16 bit DAC を持つ cPCI 規 格のデジタル制御ボード 2 台を用いて 8 空洞の離調を 測定した。

空洞の加速電場を測定する際、空洞出力ごとにパ ワーメーターを用意することはコストや管理の都合上、望 ましくない。今回の運転では、9P1TのRFスイッチを用 いた入力切り替えユニットを開発した(図5)。

の離調測定、2 台目は下流側空洞の離調測定を行うデジタル LLRF 制御系を構築した。

Figure 5: Diagram of RF switching unit.

今回の CM1/2a の運転では、最初に各空洞への RF 入力が等分配になるように可変ハイブリッドの分割比を 設定した。次に各空洞のクエンチリミットを調査しつつ、 可変ハイブリッドの分割比の調整を実施し、各空洞のベ クトル和での平均加速電場で 33.8 MV/m での運転を確 認した[8](図 6)。

Figure 6: Detuning, input RF, reflected RF and cavity RF of CM1/2a at average accelerating field of 33.8 MV/m.

CCM と同じく CM1/2a の 7 台の空洞について、パ ワーメーターで測定した加速電場とビームエネルギーか ら求めた加速電場の比較を行った。CM1/2a 下流のベン ド磁石とプロファイルモニターが空洞一台のエネルギー 増加に対応できる精度が無かったため、7 台での加速エ ネルギーを基準にして、1 台づつ空洞を離調させた場合 のエネルギー差からパワーメーターとビームエネルギー を求めた(Table 2)。

その結果、計算で得られた加速電場は5台の空洞で 5%以下の精度で一致したが、引き算でビームエネル ギーを求めるため、約10%の誤差が出てくるものであっ た。測定精度を上げる比較手段については、今後の課 題となる。

Table	2:	Com	iparison	of	each	cavity's	accelerating	field
estima	ited	l fron	n beam e	ene	rgy ar	nd power	meter.	

# of cavity	Beam energy [MV/m]	Power meter [MV/m]	
Cav#1	36.6±3.6	35.2	
Cav#2	34.3 ± 3.6	34.4	
Cav#3	33.0±3.6	32.1	
Cav#8	37.8±3.6	34.5	
Cav#10	31.3 ± 3.6	31.5	
Cav#11	33.5±3.6	29.5	
Cav#12	29.0±3.6	28.9	

5. まとめ、将来計画

STF-2 加速器でのビーム加速運転に向けて、高周波 系の構築とデジタル LLRF 制御系の整備をした。各高 周波系は、ベクトル和フィードバック制御での運転が行 われた。CCM と CM1/2a では、各空洞でのビームエネ ルギーゲインと設定した加速電場の比較を行った。

今回のビーム運転では、ビームパルス幅が最大 6 µs であったために積極的なビーム負荷による保証は行わな かったが、今後の運転に向けて準備を進めている。また、 引き続き ILC の高周波系の開発に向けて、STF-2 加速 器の高周波系の整備を続けていく。

謝辞

STF-2 加速器の高周波系の構築や運転に際して、以下の方々に対し、ここに改めて感謝申し上げます。

石本和也氏、沼田直人氏、堤和昌氏、(以上、日本ア ドバンストテクノロジー株式会社)、早川厚氏(関東情報 サービス株式会社)

参考文献

- ILC Technical Design Report (2013). https://www.linearcollider.org/ILC/Publications/Technical-Design-Report
- [2] Y. Yamamoto et al., in these proceedings.
- [3] M. Ryoshi et al., "LLRF BOARD IN MICRO-TCA PLATFORM", Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan, WEPS109.
- [4] M. Ryoshi et al., "MTCA.4 FPGA (ZYNQ) BOARD", Proceedings of the 11th Annual Meeting of PASJ, SUP103.
- [5] S. B. Wibowo *et al.*, "Digital low level rf control system with four different intermediate frequencies for the International Linear Collider", Phys. Rev. Accel. Beams 21, 082004 (2018).
- [6] M. Omet *et al.*, "Development and Application of a Frequency Scan-based and a Beam-based Caliblation Method for the LLRF Systems at KEK STF", Proceedings of the 9th Annual Meeting of PASJ, FRLR09.
- [7] S. Michizono *et al.*, "Vector-sum control of superconducting rf cavities at STF", Proceedings of PAC09, Vancouver, BC, Canada, WE5PFP083.
- [8] K. Tsutsumi et al., in these proceedings.