Improving Reliability:
Redundant 10C for ATCA and
automation of EPICS system

tests

Artem Kazakov, KEK/SOKENDAI

How to improve Reliability of a
Control System:

Designh with high availability in mind
Use better Software

Implement redundancy for critical parts
Etc...

Outline:
Redundant EPICS IOC for ATCA

Brief introduction of EPICS, 10C, RIOC
What is ATCA and why do we want it?
RIOC + ATCA features and benefits

Conclusion

EPICS: Experimental Physics and
Industrial Control System

* EPICS is a set of software tools and
applications which provide a software
infrastructure for use in building distributed
control systems

* |tis used to operate Particle Accelerators,
Large Experiments and Telescopes

e Client/Server model

* Communication
protocol: Channel

Access (CA)
— CAC: client

EPICS

client

client

~ CAC

CAC

— |OC/CAS: server
e PV: Process Variable

— Named Piece of Data

28.01@ARW2009

RIOC on ATCA & EPICS Test Automation

I0C

CAS

Redundant IOC

* Provides redundancy support for EPICS IOCs

* Developed at DESY, Germany

* Supported in “official” EPICS distribution since
v3.14.10 release
— No need to patch/reconfigure/recompile BASE

— Just download RIOC libs and link them to your IOC
to make it redundant

What is redundant I0C?

CA clients

Privete

|OC#1 |OC#2

Eiplernar

N
Hardiare

28.01@ARW2009 RIOC on ATCA & EPICS Test Automation

Redundancy Monitoring Task(RMT) - Key
component of RIOC

Controls drivers

Monitors “health” of
the drivers

Checks the partner
status

Decides when to
failover (or not to)

RMT — Key component of RIOC

* Independent from EPICS core facilities
— |t uses libCom though

e Defines RMT driver interface API

— Which is very simple and easy to use

e Can be used to make other software redundant

— |.e. caGateway

Advanced Telecom Computing
Architecture (AdvancedTCA)

* Defined by PCI Industrial Computer
Manufacturers Group with 100+ companies
participating

* Targeted to requirements for the next
generation of carrier grade communications
equipment

* Incorporates the latest trends in high speed
interconnect technologies, next generation

processors and improved reliability,
manageability and serviceability

AdvancedTCA chassis and blades

28.01@ARW2009 RIOC on ATCA & EPICS Test Automation

11

Why run RIOC on ATCA?

 ATCA is a modern industry standard for HA
applications

— Supposed to be very reliable (99.999% design
availability)
 ATCA is suggested as a platform for the ILC
control system

 ATCA is a hardware designed for critical
applications and RIOC is a software designed
for critical applications

ATCA Features

ATCA provides monitoring and management
controls for many parts of the system: fans,
network connection, power supplies, bios
images, boot ROMs etc...

The key role in this process is played by Shelf
Manager

We want to use this features to make
better decisions for fail-over

ATCA Shelf manager

FOWET SUPPILIES
Sl o, i s F] A

e Status
e Voltage

Fans - Switches

e Speed e Link speed
e Inlet temp. e Temp

+Temp. . Shelf

*\/oltage

¢ Cpu status Ma nager |

\ /
: - \/

Data is exchanged through redundant Intelligent
Platform Managermient Bus1PMB &

“plain” Redundant I0C on ATCA

CA clients

28.01@ARW2009 RIOC on ATCA & EPICS Test Automation

15

“plain” Redundant I0C on ATCA

Runs “as-is”

But does not know anything about the
“smart” hardware of ATCA

Basically is same as running on two normal
PCs

Benefits of “ATCA”-aware RIOC

* Failures can be “predicted”

— i.e. temperature starts to rise and the CPU is still
working -> we can initiate fail-over procedure before
actual hardware fails -> fail-over occurs in more stable
and controlled environment

* Client connections can be gracefully closed

— Allowing the client to reconnect to back-up I0C within
1 second
|I)

— In case of “real” hardware failure reconnect would
occur only after 30 seconds

ATCA/HPI driver for RMT

|P |
e HP| Daemon e HP| Client
Library
N v

HPI - Hardware Platform Interface — Generic Platform
Independent specification to monitor and control HA systems

“HPIl-aware” RIOC on ATCA

HPI-Library

A

EPICS 10C

Shelf-manager

HPl Daemon | SNMPAgent

Self-management controller

—DIPMC

JIPMC

—13IIPMC

Blade2 sensors

;JIPMC

F ANS Bladel sensors
=BIPMC| | | [IPMC
Redundant IPMB

28.01@ARW2009 RIOC on ATCA & EPICS Test Automation

19

Result:

* Reliable Hardware (ATCA) was used in
conjunction with Reliable Software (RIOC)

e RIOC was extended to use available hardware
sensors to make better failover decisions

* The software can be used on other hardware
(i.e. “common” server-type PC): the
requirement is HPI library, which can run on
top of IPMI, SNMP, Sysfs(linux)...

Now RMT can monitor any available sensor
on ATCA shelf and make better fail-over
decision

configuration via iocSh:

rmtHPIDriverStart
"{RACK,0{ADVANCEDTCA_CHASSIS,0H{PHYSICAL_SLOT,4{PICMG_FRO
NT BLADE,O0}" 1

rmtHPIDriverStart “entityPath” “Sensor ID”

How to improve Reliability of a
Control System:

e Use better Software

The Problem

EPICS can run on many different OS (Linux,
Windows, Mac OS, FreeBSD, Solaris, vxWorks,
RTEMS, osf-alpha)

Usually even within one laboratory more than
one OS is used

OS versions are also different

We need to test all the configurations being
used in real control systems

EPICS existing system test package
(mrkSoftTest)

* Nobody remembers how to run these tests,
so every time people have to read
instructions => most people do not run tests

* You have to configure, execute, compare
results MANUALLY

e it’sinconvenient and |IT TAKES TIME

Typical Test Scenario:
configure & start components

|OC 1 10C 2

/.

Commands —. CA Client

Terminal

Typical Test Scenario:
wait for the results

CA Client

Terminal

28.01@ARW2009 RIOC on ATCA & EPICS Test Automation

26

Typical Test Scenario:
gather results & analyze

|OC 1 10C 2

.

IRESUIISE < CA Client

Terminal

Typical Test Scenario:
commands depend on configuration

10C 1

Results Commands
Voo

Terminal

CA Client |OC 2

Typical Test Scenario:
commands depend on configuration

10C 1

Results Commands
o~

Terminal

CA Client 10C 2

The Answer: Automation

e Just say “run all tests for me” :)
* Actually you say: ./runAllTests.rb

* Currently automated tests can be run on
local/remote machine over sh, ssh, rsh,
telnet, cu ... any other “shell-like” program

How to create new test:

* Develop the test: ioc, clients, reference
results file, etc..

e write the corresponding section in the config
file: config.yml

e write “test scenario” using provided ruby
classes

Config.yml

:TestGeneric:
<<: *default
TocBootDir: iocBoot/iocput
Cmd: put.main

reference: testcache26MAR2008.darwinx86

Simple example

class TestGeneric < RubTap::TestCase
@ioc = common setup local
def test name

@ioc.talk("< p2sec", 5)

cache response = @ioc.talk("< testcache", 20)
assert equal(@testcache reference,cache response)

end

Running tests

* Group tests into a test suite

ts = RubTap::TestSuite.new
ts<<TestGeneric.new(TestConfig::AllTestsCo
nfig.new("config.yml"))

ts.run

EPICS Test Automation package

Was used to automate the existing test
package, making it much more user-friendly
and easy to run

Can be used to write new automated tests

on-going work: to make it more “human”
readable

git://github.com/akazakov/epicstest.git

