単結晶標的を利用した陽電子生成実験

諏訪田 剛 (tsuyoshi.suwada@kek.jp) 加速器研究施設, KEK

Collaboration

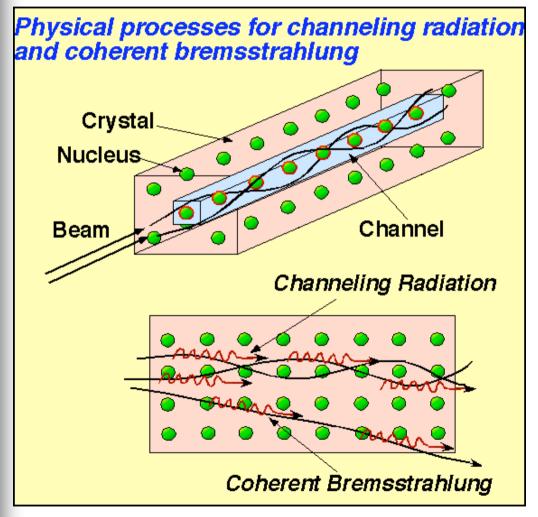
佐藤政則、古川和朗、杉村高志、紙谷琢哉、 吉田勝英、 加速器研究施設, KEK 奥野英城、 素粒子原子核研究所, KEK 梅森健成、 物質構造科学研究所, KEK 原順一、藤本紘行、浜津良輔、 東京都立大学理学研究科 A.P.Potylitsin, I.E.Vnukov, I.S.Tropin NPI, Tomsk Polytechnic University R.Chehab,

LAL, IN2P3-CNRS, Universite de Paris-Sud

Motivation

- 次世代Bファクトリー、リニアコライダー における大強度陽電子源への応用可能性を 探る
- ●特に、重金属標的(非晶質)の熱負荷による損傷が回避できる陽電子源が要求される

● 単結晶標的を利用した新しい陽電子生成


Introduction

単結晶標的を利用した新しい陽電子生成法の提唱

(R. Chehab, et al., PAC'89, Chicago, IL, USA, Mar. 1989, p.283)

タングステン結晶標的を利用した陽電子生成の原理実証実験@旧核研ES(1.2GeV電子)
 (K. Yoshida, et al., Phys. Rev. Lett. 80, 1437, 1998)

Channeling Radiation & Coherent Bremsstrahlung Processes

2004春季日本物理学会@九州大学, 27 30/Mar,2004



Fig. 4. Photon spectra for an amorphous target (darkened area) and for a crystal both of 1 mm thickness. $E^- = 2$ GeV.

Out-off energy 10 MeV.

(a) 入射電子エネルギー2GeV の場合

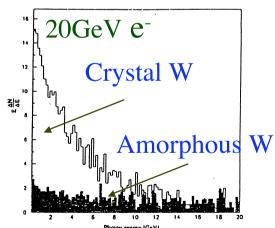
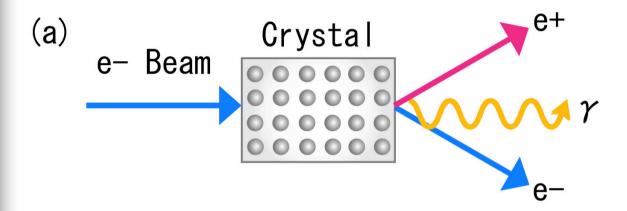
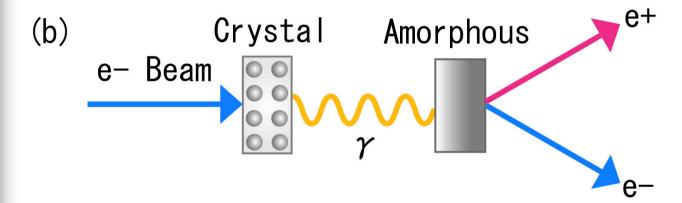
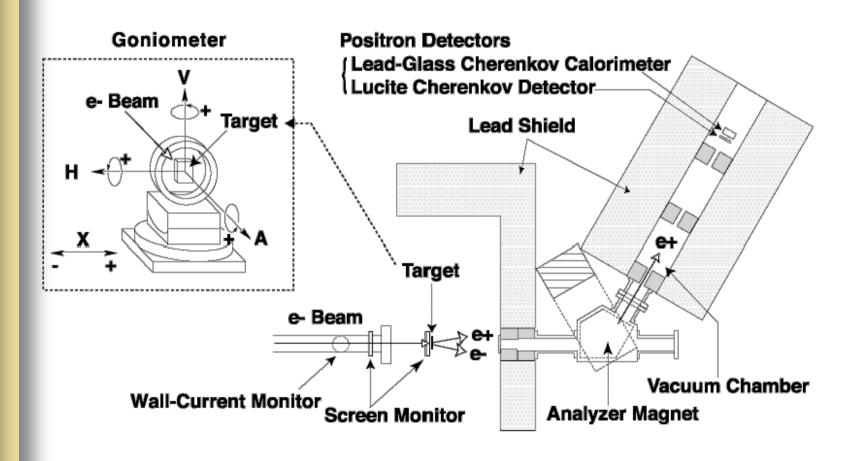




Fig. 5. Photon spectra for an amorphous target (darkened area) and for a crystal both of 1 mm thickness. $E^- = 20$ GeV. Cut-off energy 10 MeV.

(b) 入射電子エネルギー20GeV の場合

New Positron Production Schemes


Crystal Targets

標的	構造
(b)	

標的構造 (a)

Crystal	Elem.	Denom.	Thickness	X_0
			[mm]	
Diamond	С	5mmDia	4.57	0.0372
Silicon	Si	10mm <i>Si</i>	9.9	0.1058
Silicon	Si	30mm <i>Si</i>	29.9	0.319
Silicon	Si	50mm <i>Si</i>	48.15	0.514
Tungsten	W_c	2.2 mm W_c	2.2	0.629
Tungsten	W_c	$5.3 \text{mm} W_c$	5.3	1.51
Tungsten	W_c	9 mm W_c	9.0	2.57

Experimental Setup

Acceptance of the Positron Spectrometer

Pe+	Acceptance $(\Delta P \Delta \Omega)$	
(MeV/c)	$(10^{-4} \text{ x (MeV/c)} \cdot \text{sr})$	
5	1.08 ± 0.03	
10	2.47 ± 0.07	
15	3.80 ± 0.1	
20	4.81 ± 0.12	

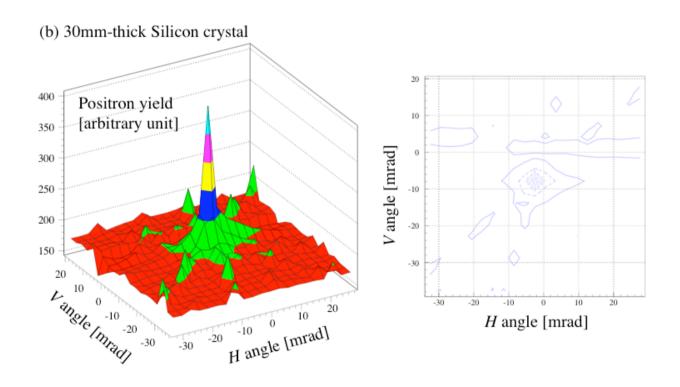
幾何学的運動量アクセプタンスのGEANT3による評価
 運動量アクセプタンスΔP/P=2.4% (FWHM)
 幾何学的アクセプタンスΔΩ=1msr at Pe+=20MeV/c.
 次世代リニアコライアー陽電子フクセプタンスの3%に対応

Experimental Condition/Electron Beam

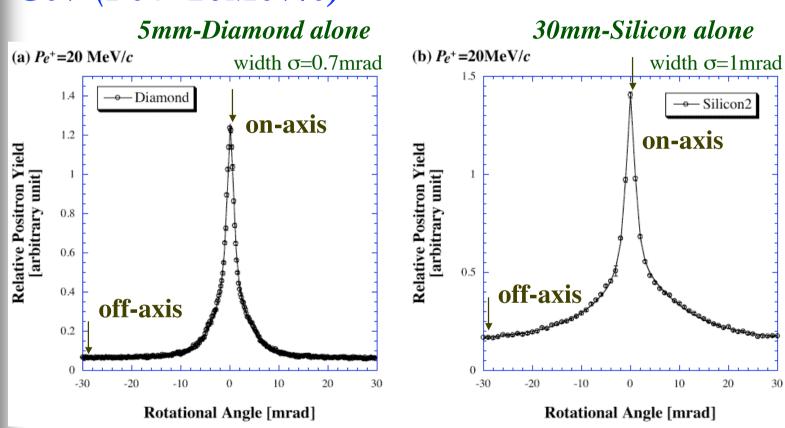
Electron Beam:

- Beam Energy 8 GeV
- Angular Spread ~22 μrad (H), ~44 μrad (V)
- Transverse Beam Size ~0.8mm (FWHM) in diameter
- Beam Charge 0.1 nC/bunch
- Bunch Length (Single Bunch) ~9 ps (FWHM)
- Beam Repetition 25Hz

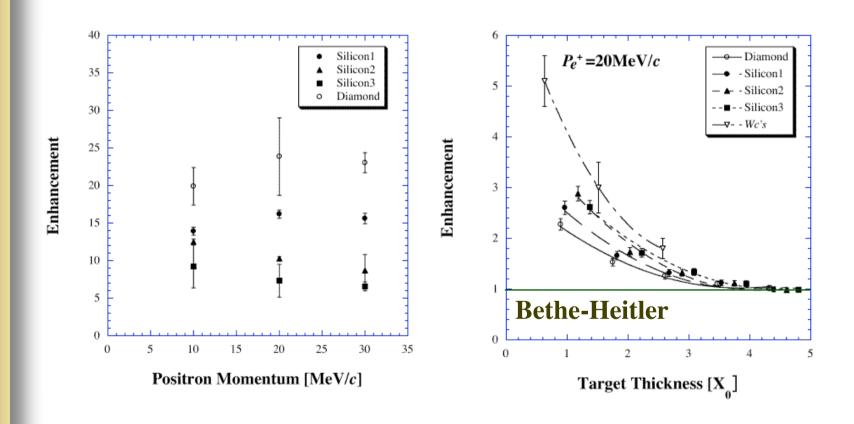
Angular Spread of the Electron Beam at the Positron Target

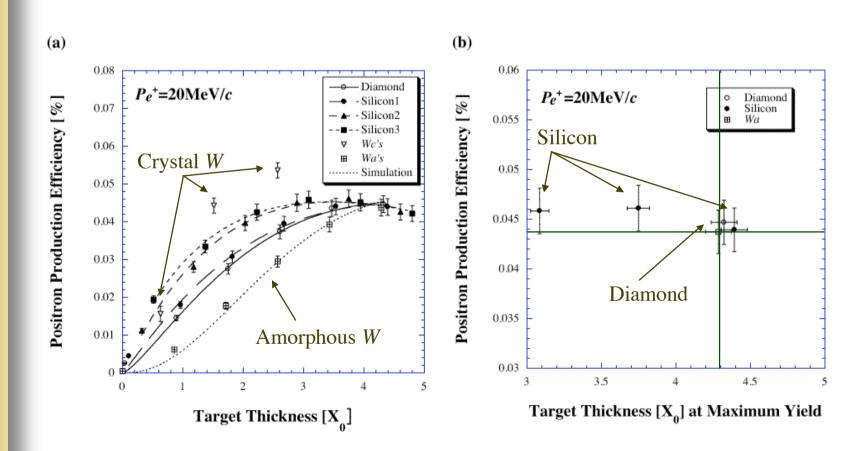

• Φ ~ 55 µrad < Φ c (Φ : beam divergence & multiple scattering at a beam window(30µm-thick SUS))

Critical Angle for the Channeling Condition at the Positron Target


Linhard Crytical Angles ($\Phi c = (2U/E)^{1/2}$, *U*:Potential depth of atomic field)

- Φc ~ 170µrad @8 GeV for Silicon Crystal
- Φc ~ 130µrad @8 GeV for Diamond Crystal


Experimental Results: 2-Dimensional Axis Scan for 30-mm thick Si Crystal at Ee-=8 GeV (Pe+=20MeV/c)


Experimental Results: Rocking Curves (Axis <110>) for 5mm-thick Diamond and 30mm-thick Si Crystals at Ee-=8 GeV (Pe+=20MeV/c)

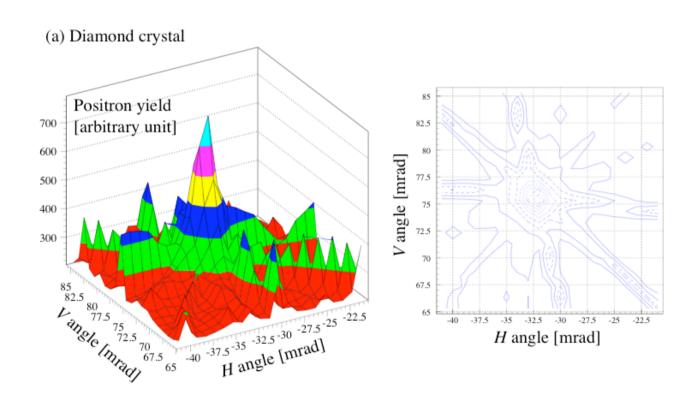
Experimental Results: Variations in the enhancement $(N_{e+@peak}/N_{e+@base})$ & Momentum dependence of the e+ yield at Ee-=8 GeV (Pe+=20MeV/c)

Experimental Results: Variations of the e+ production yield for the onaxis crystal targets at Ee-=8 GeV (Pe+=20MeV/c)

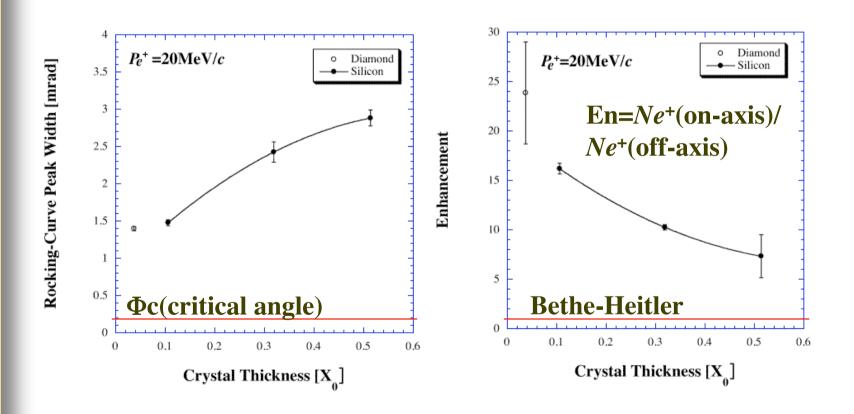
Conclusions

まとめ

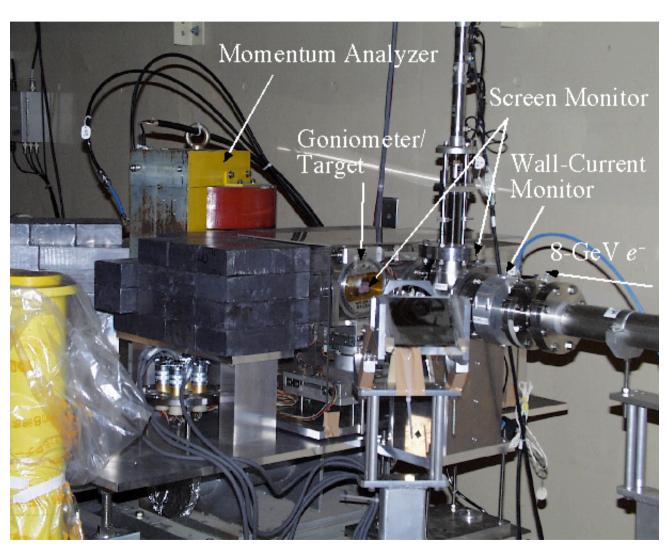
- | KEK-8GeV電子陽電子入射器において、系統的な結晶標的による陽電子生成データを取得した
- 標的厚が薄いときは、結晶効果により高い陽電子増大度を示すが、結晶厚が厚くなると増大度は急速に減少する
- 軽元素結晶標的 (Diamond, Silicon) による陽電子生成が最大となる最適標的厚での生成効率は、非晶質標的と同程度になるが (Diamond/Silicon/Tungsten標的:3/6/26%増) 、結晶効果による有効放射長の短縮を確認した(非晶質タングステンに対しDiamond/Silicon/Tungsten標的:0.7/0.8/0.5培)
- Diamond標的の単位放射長当たりの陽電子生成効率は、 Silicon標的に比べ20%程度高い


今後の方針

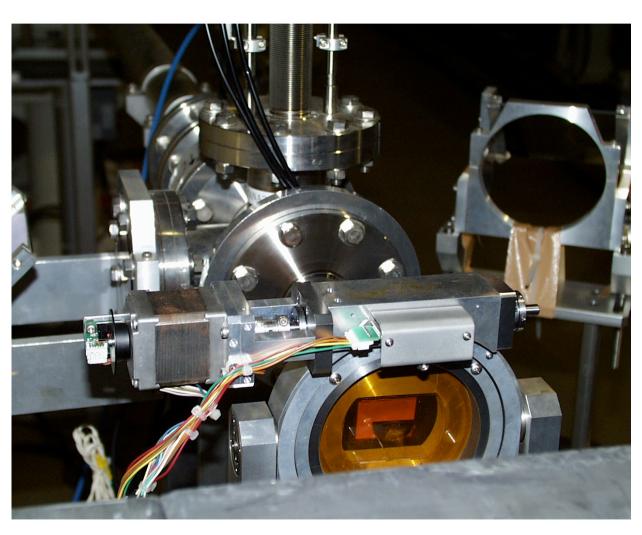
- **厚いダイヤモンド標的(10mm以上)による陽電子生成実験**
-) シミュレーションによるチャネリング/干渉性制動放射の放射素過程の理解
-) チャネリング放射光の系統的な測定(角度分布、エネルギ-分 布)


Future Plan

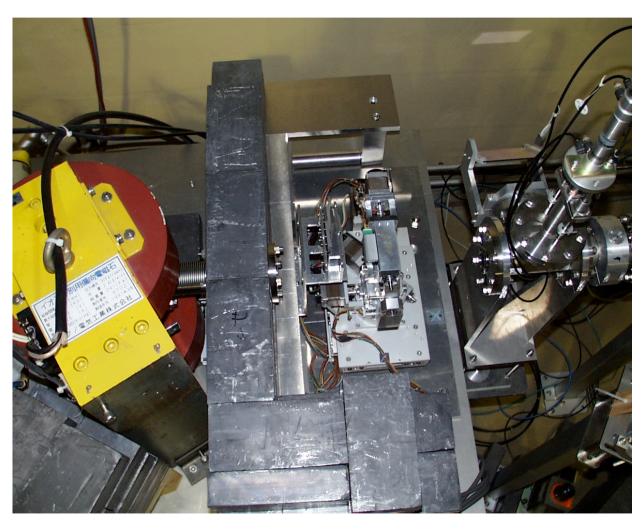
- ✓ 原理実証実験(吉田等)
- ✓ <u>系統的な実験データの蓄積</u>(標的の種類、標的厚 さ、標的スキーム、etc.)
- ✓ 大強度陽電子源(生成標的、収集部、加速部を含む)設計のための信頼性の高いシミュレーションコードの開発(現在進行中)
- ✓ シミュレーションによる陽電子源の最適化
 - ⇒ 実用可能性の判断
- ✓ 実用化に向けた開発(高品質結晶の製作、標的の 冷却構造、標的の放射線損傷、熱負荷の問題)
 - ⇒ 実用化に向けた実験的検証


Experimental Results: 2-Dimensional Axis Scan for 5mm-thick Diamond Crystal at Ee-=8 GeV (Pe+=20MeV/c)

Experimental Results: Variations in the width of the rocking-curve peak for Ee-=8 GeV (Pe+=20MeV/c)



Linac Beam Line at the 3rd switch yard


2004春季日本物理学会@九州大学, 27-30/Mar,2004

Experimental Setup (cont'd):Photo picture of a crystal target on a goniometer

2004春季日本物理学会@九州大学, 27-30/Mar,2004

Experimental Setup (cont'd):Photo picture of crystal & amorphous targets

2004春季日本物理学会@九州大学, 27-30/Mar,2004

Experimental Setup (cont'd):Positron spectrometer

2004春季日本物理学会@九州大学, 27-30/Mar,2004